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Abstract We investigate the spin-statistics connection in arbitrary dimensions for hermitian
spinor or tensor quantum fields with a rotationally invariant bilinear Lagrangian density. We
use essentially the same simple method as for space dimension D = 3. We find the usual
connection (tensors as bosons and spinors as fermions) for D = 8n + 3,8n + 4,8n + 5, but
only bosons for spinors and tensors in dimensions 8n ± 1 and 8n. In dimensions 4n + 2 the
spinors may be chosen as bosons or fermions.

The argument hinges on finding the identity representation of the rotation group either
on the symmetric or the antisymmetric part of the square of the field representation.

Keywords Spin and statistics · Higher dimensions

1 Introduction

The spin-statistics connection is an essential ingredient in our description of the world with
quantized fields, which assures on one hand the existence of macroscopic fields (like the
radiation field), and on the other hand gives rise through anticommuting fields (Pauli princi-
ple) to the valence electrons, the chemical bonds etc., and therefore to the existence of forms
and structures: the Pauli principle is really the differentiating principle in Nature.

The connection asserts that the wavefunction of several identical particles in D = 3 with
integer spin remains unchanged under an arbitrary permutation of the arguments, in which
case bosons (Bose–Einstein statistics, BE) obtains, whereas for half-integer spin the per-
muted wavefunction picks up a minus sign whenever one performs a transposition of the
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order (or, more generally, an odd sign permutation) (Fermi–Dirac statistics, FD). This trans-
lates in the usual way in the commutation (BE) or anticommutation (FD) of fields at different
space points.

With hindsight, we can say that historically the first case of such correlation appeared in
the statistical mechanics of Lichtquanten or photons (from Planck 1900 to Einstein 1905,
to Bose 1924). But the main application came with the interpretation of the Pauli exclusion
principle (1925) by Heisenberg and by Dirac (1926) in terms of the (anti-)symmetry of the
many particle wavefunctions under transposition, and subsequent application to many elec-
tron atoms. This relation between spin and statistics is fundamental; it led to the periodic
system of chemical elements, peculiar intensity rules in band spectra of homonuclear di-
atomic molecules, non-classical scattering of alpha particles, or the Ehrenfest–Oppenheimer
theorem [1] (1931) on the statistics of compound systems, among the oldest applications,
and more recently to the selection rules for the decay of unstable particles e.g. positronium,
coherent boson states and the existence of the laser, superfluidity of helium four (Kapitza
1938) and later superconductivity as coherent states of Cooper pairs (BCS theory, 1957) and
even superfluidity in helium three through condensation of pairs of atoms.1

There is more to the quantum states that mere rays. The wavefunction is really a sec-
tion on a vector bundle with base the space of rays (projective space), and a sign change
after permutation on the arguments of the wavefunction is allowed as long as the associated
density matrix is invariant: in particular, a pure state lifted to a vector representative could
acquire a plus or minus sign, corresponding to the two unique one-dimensional irreducible
representations (irreps) of the symmetric group; the sign cancels going down to the base
space: in this context, that is the precise form of the common statement that quantum states
are state vectors up to a phase, here up to a sign. In mathematical terms, statistics sign is just
a Schur multiplier.

The same argument shows also [2] why half-integer angular momentum could exist in
quantum theory in the first place; namely, the pertinent projective representations of the
rotation group (say, SO(n)) come from the linear representations of the double covering
(universal covering for n > 2), the Spin(n) group. That is, spin 1/2 is an admissible (projec-
tive) representation of the 3D rotation group, although it does not come from a linear one,
and picks up a minus sign under a full rotation.

We find it logical that (in space dimension 3, and as we shall see also in D = 8n + 3,+4
or +5) these two nonclassical properties “compensate each other”; namely, the case of Fermi
statistics goes along with half-integer spin whereas the Bose statistics occurs with integer
spin. There are two compensating minus signs for spinors (permutations of fermions and 2π

rotation), but none in the Bose (tensor) case, which therefore looks more, but it is altogether
not, wholly classical. This connection is essentially the spin-statistics relation.

In this paper we are going to see whether the spin-statistics connection holds in arbi-
trary dimensions. The motivation to study this question is fairly clear today: unification of
forces by the Kaluza–Klein mechanism, supersymmetry and superstrings, extended objects
and M-theory, etc., all point to the necessity of higher dimensions, whether invisible or
macroscopic; in F -theory we even face the case of (2, 10) spacetime dimensions, that is,
two times. As these theories are quantum theories, one needs to see how the usual argument,

1The symmetry or antisymmetry of the wave functions obtains only in a quantum field theory. We find re-
markable that a healthy positivistic attitude, namely that the permutation of identical particles should produce
no observable effects, would have different ways to be implemented in the quantum theory! This is possible at
all, of course, because of the projective or rather the bundle nature of quantum states, which we have already
emphasized [2].
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i.e. the symmetry of the bilinear scalar product under 3D rotations, extends now to other
D > 3 dimensions. Although at the moment the question is rather academic, if one of these
higher dimensional theories stands in the future, the question will be an important one, and
so we believe that the present investigation is justified.

2 Review of the Usual Proof

There are many proof of the Spin-Statistics relation in relativistic quantum field theory, start-
ing with the original one by Pauli in 1940 [3]; for a thorough review of the situation up to the
year 2000 see the book [4]. For our purposes we shall recall here the proof of the theorem
as given by Sudarshan many years ago [5–7], which starts from a 3D rotationally invariant
field Lagrangian density and contains the essential features. The manifold applications of
the theorem in nonrelativitic contexts claims for a demonstration not requiring relativistic
invariance. Axiomatic formulations of quantum field theory, which do not use Lagrangians,
do need special relativity to prove commutativity properties of the fields at distant points [8].
However, the requirement of relativistic invariance is somewhat inappropiate, since most of
the manifestations of this relationship are in the nonrelativistic domain: atoms, nuclei, con-
densed matter situations, quantum liquids, phonons in solids, etc. Also the key topological
feature, namely the symmetry group not being simply connected, appears already in the pure
space part.

The fundamental principle of field dynamics is the Action Principle, as established by
Weiss (1938) and in its quantized form by Schwinger (1951) [9]. This presentation of the
quantum theory demands that the variation of any object Φ in the theory be given by its
commutator with the variation of S, the action of the system. That is

δΦ = [Φ,−iδS], (1)

which is simply the generalization of the quantum rule [q,p] = i�. It characterizes the
action as universal generator of variations. The action is the time integral of the Lagrangian;
we shall describe now a classical mechanical theory in the first order formalism in which the
Lagrangian is a function on the T T ∗Q manifold, where Q (dim Q = n) is the configuration
space, T ∗Q the phase space (or cotangent bundle) and T M means the tangent bundle to any
manifold M . In the first order formalism we have the Lagrangian function L0 ∈ F(T T ∗Q),
with

L0 = paq̇a − H(qb,pb) (2)

with summation on a,1 ≤ a ≤ n, and where Ȧ = (∂/∂t)A.
The equations of motion are not altered by the (anti)symmetrization

L = 1/2(paq̇a − qaṗa) − H(qb,pb). (3)

So, defining ξ := (qa,pa) as a column vector, we can take the Lagrangian as (tB is the
transpose of B)

L = 1/2(t ξC(∂/∂t)ξ) − H(ξ) (4)

where C = −tC is a purely numerical (invertible) real antisymmetric matrix. Notice the
“symplectic” character of this first order Lagrangian associated to the use of first order
time derivative. The variable ξ (with 2n number of components) depends in time, and the
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dynamical term H(ξ) does not contain time derivatives. Notice also in this formalism the
kinetic term is bilinear in the fields.

Inspired by this, we know write our Action and the Lagrangian density operators for
arbitrary quantum fields χ as

S[χ ] =
∫ t

t0

dt

∫
d3xL[χ ],

(5)
L = (1/4)(tχK(∂/∂tχ) − (∂/∂t tχ)Kχ) −H[χ ]

following also Schwinger [9–11]. Here χ = χ(x, t) is a finite-dimensional hermitian quan-
tum field, H is the Hamiltonian density, and K is an antihermitian numerical matrix: The
dynamical variable becomes hermitian, and K should be taken antihermitian, K = −K†.

But now there are naturally two possibilities: the matrix K can be real antisymmetric or
purely imaginary and symmetric, as already Schwinger said half a century ago; and these
two possibilities would fix the commutation/anticommutation properties of the field varia-
tion δχ with the fields contained in χ , leading finally to the sought-for connection between
spin and statistics.

Here we shall use for Φ just the fields χ . The complete Lagrangian would have many
pieces, viz.:

L = L1(kinetic, time) +L2(kinetic, space) +L3(mass) +L4(interactions) (6)

where we know already that the first term, from rotational invariance alone, should be a
scalar and so we shall impose SO(3) invariance in the quantum mechanical sense of above,
that is, linear SU(2) invariance. The form of the temporal kinetic term, with the imposed
rotational invariance, is the only ingredient we need for our proof of the theorem. Whether
the remaining terms in the Lagrangian, specially the dynamics encoded in the Hamiltonian,
would spoil the arguments, we leave open at this point and will comment later on.

The general variation δS contains three terms: variation in the content of the integral
inside the fixed boundary, which gives the equations of motion, variations of the limits of
integration, and thirdly variations of the field quantities at the fixed boundary. For our case
only the third variation is pertinent, namely the variations of the fields at the boundaries,
which can be taken as two spacelike surfaces at times t0 and t , respectively: we consider the
variation only on the “future”, at time t , and omit the (repeated) t label.

The equation becomes

4iδχa(x) =
[
χa(x),

∫
d3y{δtχb(y)Kbcχc(y) − tχb(y)Kbcδχc(y)}

]
(7)

where x = (x, t), y = (y, t), etc.
This is completely general. Now we require that
“The field variation δχa(x) either commutes or anticommutes with the field itself”: this

is equivalent to restricting ourselves to Fermi or Bose statistics (we specifically exclude
parastatistics; the only kind of parastatistics that is valid is the reducible parastatistics as
introduced by H.S. Green [12]; see also [13]).

(A) The field variation COMMUTES with the field itself. Then we obtain in the usual
way (see [5–7])

2iδ3(x − y) = [χa(x),χb(y)]Kab (8)
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where K has to be real antisymmetric. This matrix K might be degenerate: call K0 the
restriction of K to the minimal components of a particular spin in χ : K0 is then regular
(invertible). We can then write symbolically

2iK−1
0 = [χ,χ ] (9)

where

K0 = −tK0 with detK0 �= 0 (10)

which is the most general way of expressing the fundamental commutation relations charac-
teristic of Bose fields: different field components commute, but field and momentum com-
ponents have an “i” as their commutator.

(B) The field variation anticommutes with the field itself. Then from the previous equa-
tion we obtain, (with {a, b} := ab + ba):

2δ3(x − y) = {χa(x),χb(y)}Kab (11)

with K now a real symmetric matrix. Again, by restricting to minimum fields, we can write
the anticommutation rules for Fermi fields in a form similar as before:

2K−1
0 = {χ,χ}. (12)

But the character of K can be obtained also from the kinetic term of the Lagrangian by
appealing to rotational invariance: namely tχK∂/∂tχ has to be a SO(3) scalar (invariant),
as K connects only pieces of χ with the same spin. Recalling that the kinetic term involves
the antisymmetric time derivative, for integer spin the matrix K has to be antisymmetric,
whereas for halfinteger spin K is symmetric.

In three space dimensions the squares of the irreducible representations of SU(2) are well
known; for example, for l integer

Dl ⊗ Dl = D0+ + D1− + D2+ + · · · + D2l+ (13)

whereas for s half-integer

Ds ⊗ Ds = D0− + D1+ + · · · + D2s+ (14)

where (+) indicates the symmetric, and (−) the antisymmetric, parts of the product. This
says that for tensors, the Identity irrep (scalar product) is in the symmetric part, whereas for
spinors is in the antisymmetric part (e.g. D1/2 ⊗D1/2 = D1 +D0 = 3(sym)+1(asym)). This
crucial result comes really from the symplectic character of the fundamental, spin 1/2 irrep
of SO(3), as Spin(3) = SU(2) = SpU(1).

This encompasses the spin-statistics theorem in 3 space dimensions: the specific form of
K = −K† in the Lagrangian implies that integer spin would have K as real antisymmetric,
hence the commutation relations and Bose statistics. With half-integer spin fields is the
other way around: symmetric K would imply anticommutators, hence Fermi statistics and
the Pauli exclusion principle.

The argument can be reversed, namely starting from this result, we would conclude the
symmetry/antisymmetry of K , and from this the rules Bose or Fermi respectively for BE or
FD, recalling that the time derivative is an antisymmetric operator.

Our argument in 3D is really in consonance with special relativity: namely, the use of a
spacelike surface to state initial operator conditions is a wholly Lorentz invariant statement.
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It is still valid for, say, Galilean invariant theories, as long as one deals with quantum field
theories, in which particles can be created and destroyed.

We address now the question whether the validity of the proof could not be spoiled by
the neglected terms in the Lagrangian. The space part of the kinetic density should cause
no problems, and indeed our argument should be a proof of the spin-statistics theorem for
nonrelativistic field theories, in which particle creation/destruction is allowed. Wightman
has emphasized that simple, quantum-mechanical many-body systems with fixed number of
particles need not obey the standard spin-statistics relation. The reason for the sufficiency of
the time derivative comes from the variation principle referring, in our case, to two spacelike
surfaces.

What about limitations coming from peculiar Hamiltonians? We do not have a full an-
swer to this, but would like to make the following remarks: in some cases, in which the
Hamiltonian is not bounded from below, as in the naive case of the Dirac equation, the right
statistics comes to the rescue, and makes sense of such a Hamiltonian, as the “anticom-
mutator” statistics incorporates the exclusion principle, and the equivalent of hole theory
and redefinition of the vacuum makes the rest. A general Hamiltonian with no lower bound
would be of course unacceptable already at the classical level.

Another question is the applicability of the method to composite systems; it is a bit
striking that e.g. protons and neutrons, being fermions, make up compound systems like the
deuteron or the alpha particle with tested boson character. Here we only remind the reader
of the old quoted Ehrenfest–Oppenheimer paper [1], making very plausible that composite
even/odd number of fermions should enjoy corresponding Bose/Fermi statistics. But one
should admit frankly that the whole issue of statistics of composite systems deserves a closer
look.

3 Particle Statistics in Arbitrary Dimensions

Before going into technical details we would like to show why the symmetry type of K in
3D is not to be expected for 8 space dimensions.

The reason is this: in 3D, the Id irrep of Spin(3) appears in the antisymmetric part of the
square, viz.:

D1/2 ∧ D1/2 = D0 : 2 ⊗ 2 = 3(sym) + 1(asym) (15)

whereas in 8D the two chiral irreps of Spin(8), 8s,c behave like the vector irrep 8v , also
of dim 8, because triality (see e.g. [14]) permutes the three irreps, so the Id irrep appears
necessarily in the symmetric square of any of the three irreps:

8v ∨ 8v = 1 + 35,8v ∧ 8v = 28, (16)

8 s ∨ 8 s = 1 + 35′, 8 s ∧ 8 s = 28 same for 8 c; (17)

here 28 is the adjoint, 35 the 2-symmetric traceless, 35′ the (anti-)self-dual 4-form, etc. Thus
for D = 8 the identity (Id) irrep appears in the symmetric part of the square of either chiral
irrep, contrary to the situation in 3D; so they can only describe Bose fields, according the
arguments above. In the Appendix we delve more deeply in the dimension 8 case.

Indeed, from the properties of Clifford algebra we can see that the 8D case is a case
of real type for the spin irreps, whereas in 3D the type is quaternionic (pseudoreal). The
general result is now easily obtained from the Clifford periodicity-8 theorem for spin groups,
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which itself can be easily obtained from the finite Clifford groups [15]. The result for the
Type T of Spin(n) irrep is

Dim 8n + 3,8n + 4,8n + 5: T = −1 (peudoreal), (18)

Dim 4n + 2: T = 0 (complex), (19)

Dim 8n + 1,8n,8n − 1: T = +1 (real). (20)

In the first case, because Spin(n) group lies inside the symplectic part, the normal sit-
uation obtains. The Id irrep is in the antisymmetric part. In the third case, is the opposite:
the Spin group lies in the orthogonal part, and the Id irrep is in the symmetric part. This
generalizes the cases D = 3 and D = 8 respectively.

In the complex case, 2 mod 4, the Id irrep, being real, has to be in the (mixed) product of
the two complex conjugate irreps; by putting them together we get real fields (Majorana).
There are two Id irreps, and we can always arrange to have one in the antisymmetric part, if
we wish, but it is not forced upon us. In other words, spinors in 4n + 2 dimensions can be
either bosons or fermions.

Since the governing crtiterion is the Type, whether R (real, +1), C (complex, 0) or H

(quasireal, −1), the general result, as far as the argument depends on the group of the space
only, is:

For 8n+3,+4,+5, the usual spin-statistics connection obtains, and spinors are fermions.
For 8n ± 1,0, a wrong connection extants (i.e., tensors and spinors have to be bosons).
For 4n + 2 (complex case), spinors can be fermions or bosons, it is up to us. Tensors are

bosons in all cases (correspondence principle).

4 Concluding Remarks

We see that the proof of the commutation rules in arbitrary dimension is very simple; it uses
only the temporal part if the kinetic term in the Lagrangian. This is in the spirit of Neuen-
schwander query [16] regarding a simple proof of the spin-statistics connection, extended
now to arbitrary dimensions.

We find surprisingly few references to the n-dimensional spin-statistics question in the
published literature; the reason might be that statistics deals with two or more particles, but
in higher dimensions we still have to find one! Weinberg [17] is one of the few references to
higher dimension spin-statistics connection; see also [18].

The derived results are for wavefunctions of theories with quantized fields, allowing vari-
able number of particles. For a fixed number of identical particles one could use either sym-
metrized or antisymmetrized wavefunctions [19].

We are not considering dimensions 1 and 2. There is no little group in D = 1, as SO(1) =
{1}, hence no spin, and indeed there is some freedom to chose the quantization rules: recall
quantized solitons in 1 + 1 dimension should behave as fermions (Coleman, Mandelstam
1975). Also, the covering group of SO(2) is R: then there is a vast margin for statistics. The
large literature for space dimension 2, where anyons live, has been reviewed e.g. by Forte
[20].
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Appendix

We include here for completeness some mathematical results regarding spin groups and spin
representations; see [14] and [15].

The first eight spin groups already reflect the Irrep Type as stated above, because the
isomorphisms

Spin(1) Spin(2) Spin(3) Spin(4) Spin(5) Spin(6)

|| || || || || ||
O(1) U(1) SpU(1) SpU(1)2 SpU(2) SU(4)

Type +1 0 −1 −1 −1 0

(21)

and again Spin(7) and Spin(8) are real, Type (+1).
In three dimensions, the spin group Spin(3) has a faithful irrep of complex dimension 2,

isomorphic indeed to SU(2) = SpU(1). The relation with the rotation group

1 → Z2 → SU(2) → SO(3) → 1 (22)

implies spinors rotate 1/2 turn when vectors make a full turn. In 8 space dimensions
the situation is different. The group Spin(8) has as center Z2 × Z2, so it has three or-
der two subgroups, whose quotients coincide with the two real chiral spin representations
8s = �L,8c = �R and the vector one, 8v . A further quotient by the remaining Z2 produces
the projective group PO(8) from either:

Spin(8)

⎧⎨
⎩

SpinorL = �L, dim 8 real
Vector = SO(8)

SpinorR = �R, dim 8 real

⎫⎬
⎭ PO(8). (23)

Now in 8 dimensions the three real dim−8 representations are permuted by the symmet-
ric group in three symbols S3 (Cartan’s triality, [14]). Recall O(8), with symbol D4 is the
unique simple Lie algebra with a large than Z2 automorphism group. Therefore the square
of either irrep of the three should be similar, so it is impossible that the chiral irrep and
the vector irreps differ in the symmetry type of the product. Indeed, the products of these
8 − dim irreps are (with + sym, − asym parts)

Vector2 = graviton(35+) + dilaton(1+) + 2 − form(28−),

Spinor2
L = selfdual + 4 − form(35+) + scalar(1+) + 2 − form(28−),

Spinor2
R = antiselfdual4 − form(35+) + scalar(1+) + 2 − form(28−),

Vector × Spinor = Gravitino(56) + vector(8),

SpinorL × SpinorR = 3 − form(56) + vector(8).

We use the particle content of SuperGravity N = 2 in ten dimensions, whose massless little
group is O(8).

Indeed, the exceptional Lie algebra F4 contains the four fundamental irreps of D4:
dimF4 = 52 = 8 × 7/2 + 3 × 8. The Weyl group of F4 (order 1152) is the symmetry group
of the 24-cell, the most symmetric of the regular polytopes, living in 4 dimensions [21], and
tessellating S3.
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